(0) Obligation:

Clauses:

plus(0, Y, Y).
plus(s(X), Y, Z) :- plus(X, s(Y), Z).

Query: plus(g,a,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

plusA(0, T5, T5).
plusA(s(0), T18, s(T18)).
plusA(s(s(T25)), T29, T28) :- plusA(T25, s(s(T29)), T28).

Query: plusA(g,a,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
plusA_in: (b,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

plusA_in_gaa(0, T5, T5) → plusA_out_gaa(0, T5, T5)
plusA_in_gaa(s(0), T18, s(T18)) → plusA_out_gaa(s(0), T18, s(T18))
plusA_in_gaa(s(s(T25)), T29, T28) → U1_gaa(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
U1_gaa(T25, T29, T28, plusA_out_gaa(T25, s(s(T29)), T28)) → plusA_out_gaa(s(s(T25)), T29, T28)

The argument filtering Pi contains the following mapping:
plusA_in_gaa(x1, x2, x3)  =  plusA_in_gaa(x1)
0  =  0
plusA_out_gaa(x1, x2, x3)  =  plusA_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

plusA_in_gaa(0, T5, T5) → plusA_out_gaa(0, T5, T5)
plusA_in_gaa(s(0), T18, s(T18)) → plusA_out_gaa(s(0), T18, s(T18))
plusA_in_gaa(s(s(T25)), T29, T28) → U1_gaa(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
U1_gaa(T25, T29, T28, plusA_out_gaa(T25, s(s(T29)), T28)) → plusA_out_gaa(s(s(T25)), T29, T28)

The argument filtering Pi contains the following mapping:
plusA_in_gaa(x1, x2, x3)  =  plusA_in_gaa(x1)
0  =  0
plusA_out_gaa(x1, x2, x3)  =  plusA_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PLUSA_IN_GAA(s(s(T25)), T29, T28) → U1_GAA(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
PLUSA_IN_GAA(s(s(T25)), T29, T28) → PLUSA_IN_GAA(T25, s(s(T29)), T28)

The TRS R consists of the following rules:

plusA_in_gaa(0, T5, T5) → plusA_out_gaa(0, T5, T5)
plusA_in_gaa(s(0), T18, s(T18)) → plusA_out_gaa(s(0), T18, s(T18))
plusA_in_gaa(s(s(T25)), T29, T28) → U1_gaa(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
U1_gaa(T25, T29, T28, plusA_out_gaa(T25, s(s(T29)), T28)) → plusA_out_gaa(s(s(T25)), T29, T28)

The argument filtering Pi contains the following mapping:
plusA_in_gaa(x1, x2, x3)  =  plusA_in_gaa(x1)
0  =  0
plusA_out_gaa(x1, x2, x3)  =  plusA_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
PLUSA_IN_GAA(x1, x2, x3)  =  PLUSA_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSA_IN_GAA(s(s(T25)), T29, T28) → U1_GAA(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
PLUSA_IN_GAA(s(s(T25)), T29, T28) → PLUSA_IN_GAA(T25, s(s(T29)), T28)

The TRS R consists of the following rules:

plusA_in_gaa(0, T5, T5) → plusA_out_gaa(0, T5, T5)
plusA_in_gaa(s(0), T18, s(T18)) → plusA_out_gaa(s(0), T18, s(T18))
plusA_in_gaa(s(s(T25)), T29, T28) → U1_gaa(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
U1_gaa(T25, T29, T28, plusA_out_gaa(T25, s(s(T29)), T28)) → plusA_out_gaa(s(s(T25)), T29, T28)

The argument filtering Pi contains the following mapping:
plusA_in_gaa(x1, x2, x3)  =  plusA_in_gaa(x1)
0  =  0
plusA_out_gaa(x1, x2, x3)  =  plusA_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
PLUSA_IN_GAA(x1, x2, x3)  =  PLUSA_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSA_IN_GAA(s(s(T25)), T29, T28) → PLUSA_IN_GAA(T25, s(s(T29)), T28)

The TRS R consists of the following rules:

plusA_in_gaa(0, T5, T5) → plusA_out_gaa(0, T5, T5)
plusA_in_gaa(s(0), T18, s(T18)) → plusA_out_gaa(s(0), T18, s(T18))
plusA_in_gaa(s(s(T25)), T29, T28) → U1_gaa(T25, T29, T28, plusA_in_gaa(T25, s(s(T29)), T28))
U1_gaa(T25, T29, T28, plusA_out_gaa(T25, s(s(T29)), T28)) → plusA_out_gaa(s(s(T25)), T29, T28)

The argument filtering Pi contains the following mapping:
plusA_in_gaa(x1, x2, x3)  =  plusA_in_gaa(x1)
0  =  0
plusA_out_gaa(x1, x2, x3)  =  plusA_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
PLUSA_IN_GAA(x1, x2, x3)  =  PLUSA_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSA_IN_GAA(s(s(T25)), T29, T28) → PLUSA_IN_GAA(T25, s(s(T29)), T28)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PLUSA_IN_GAA(x1, x2, x3)  =  PLUSA_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUSA_IN_GAA(s(s(T25))) → PLUSA_IN_GAA(T25)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUSA_IN_GAA(s(s(T25))) → PLUSA_IN_GAA(T25)
    The graph contains the following edges 1 > 1

(14) YES